Entradas

Alternador para grupo electrógeno

Aunque no sepas muy bien de qué se está hablando cuando se trata de alternadores, estoy seguro que con este artículo lo vas a entender de forma rápida y fácil.

El alternador para grupo electrógeno es un dispositivo similar al aparato que mueve el ventilador del techo de tu salón, solo que, en lugar de consumir corriente para generar un movimiento mecánico, aprovecha un movimiento mecánico para generar electricidad.

¡Así de simple!

Si has leído el artículo anterior sobre el motor para grupo electrógeno, ya has entendido que en este caso aprovechamos la fuerza mecánica del motor para poner en marcha la máquina eléctrica y generar corriente.

Hago de tu conocimiento que desde el punto de vista eléctrico no es una máquina sencilla de entender, por ello, aquí no hablaremos de ‘porqué’ funciona, sino más bien, de cómo se presenta y de su integración en el grupo electrógeno.

¿Qué sabes de un alternador para generador?

Un alternador, que también se llama generador, es una máquina eléctrica cuyo funcionamiento está basado en las propiedades de la inducción electromagnética. Este fenómeno hace que cuando un conductor se mueve dentro un campo magnético, se genera un cierto voltaje a sus extremos. Este voltaje provoca una corriente y así conseguimos electricidad.

El movimiento relativo del conductor y del campo magnético es provocado por el motor diésel, por lo tanto:

Energía mecánica ⇒ electricidad

 

Alternador para grupo electrógeno

Fuente Wikipedia

Un generador para grupo electrógeno está compuesto por una parte exterior fija y hueca, en cuyo interior se aloja una especie de cilindro móvil. La parte fija se llama ESTATOR o INDUCIDO y es lo que se ve, la parte interna es el ROTOR o INDUCTOR, que está conectado al motor y da vueltas porque este le trasmite su rotación.

El campo magnético se provoca en la parte llamada ROTOR e induce el voltaje que comentábamos antes en los conductores que forman el ESTATOR. De forma que en los terminales de estos conductores podrás conseguir una tensión, 230 V, 400 V o la que quieras, para conectar los aparatos eléctricos que desees.

Es importante distinguir entre alternadores síncronos y asíncronos. Sin entrar en detalles técnicos, será suficiente con saber que los grupos electrógenos emplean los síncronos. Los alternadores asíncronos se usan para otras aplicaciones, sobre todo en generación fija de potencia elevada conectada a la red eléctrica como generadores eólicos o hidroeléctricos.

Los alternadores síncronos para grupos electrógenos son máquinas muy eficientes. Su rendimiento varía desde un mínimo del 80 % en los más pequeños hasta alcanzar un 97 % en los de mayor potencia.

A continuación, te voy a hablar en detalle de las características más importantes de un alternador para grupo electrógeno.

Características de un alternador para grupo electrógeno

El rotor

El rotor es el conjunto de las partes que conectadas al motor diésel, rotan en el interior del alternador generando un campo magnético.

Está compuesto por un eje mecánico sobre el que están fijados diversos bobinados de cobre. El tipo y el número de bobinados determinan el número de polos del alternador, que es una característica muy importante, porque establece la frecuencia del suministro eléctrico a un dado régimen de revoluciones de motor. Cada bobinado tiene dos polos.

Por ejemplo:

Girando el motor a 1500 Revoluciones por minuto y teniendo 4 polos (2 bobinados) obtendremos una frecuencia eléctrica de 50Hz. Girando el motor a 1800RPM la frecuencia será de 60Hz.

Las RPM y la frecuencia están relacionadas según la fórmula -tranquilo, es la única fórmula del post 🙂

RPM= 60 * frecuencia / pares de polos

alternador para grupo electrógeno

¿Y el campo magnético, de dónde viene?

Para generar el campo magnético en el rotor se le debe de suministrar una corriente eléctrica denominada EXCITACIÓN, alternativamente se pueden usar imanes permanentes. Los alternadores de imanes permanentes son más costosos y de construcción más compleja.

Existen muchas formas de excitar una máquina síncrona, sin embargo, solo te voy a contar las que realmente se usan hoy en día en grupos electrógenos.

A continuación expongo dos tipos de excitación:

Sin escobillas (Brushless) con puente de diodos: la alimentación se toma directamente desde el mismo rotor, bien a través de un bobinado auxiliar, bien a través de un mini-alternador montado en el mismo. Esto permite que no haya necesidad de conexión eléctrica entre el mismo rotor y el estator, antiguamente sí existía esta necesidad  y por ello se empleaban escobillas.

Compound: la alimentación se consigue a través de un transformador conectado a la tensión de salida del mismo alternador. Se trata de un transformador especial pues controla tanto voltaje como corriente con dos devanados distintos.

El estator

El estator es el conjunto de partes que constituyen el exterior del alternador y están fijas mientras el rotor da vueltas.

También está formado por una estructura metálica y una serie de bobinados de cobre. A las extremidades de estos bobinados tendremos el voltaje inducido por el campo magnético del rotor.

El bobinado se realiza enrollando un hilo de cobre aislado entorno a una estructura metálica, cada giro es una espira. Una vez terminado el bobinado, se impregna en resinas especiales.

La cantidad de bobinados, el número de espiras y su disposición física, determinan la tensión de salida, mientras que la frecuencia solo depende del número de revoluciones del motor principal y del rotor. Por ellos todos los fabricantes disponen de distintos tipos de bobinado que identifican con códigos específicos. El que proporciona 400 Vac y 50 Hz trifásico con neutro es el más común pero también hay más configuraciones como monofásicos, con neutro, sin neutro, bifásicos, y más tensiones como 380 V, 600 V o 690 V entre otras. Sin hablar de los de media tensión… ¡Ya Paro!

Los bobinados se identifican por su disposición y el número de terminales.

Hay bobinados ESTRELLA, DOBLE ESTRELLA, TRIÁNGULO, DOBLE TRIANGULO, ZIG-ZAG y más.  Dependiendo de la configuración deseada tienen 6 bornes o 12 bornes. Es decir, 6 puntas para 3 bobinas, o 12 puntas para 6 bobinas.

Muchos son los datos característicos de los alternadores desde el punto de vista eléctricos, aquí solo mencionaré algunos.

La corriente de corto circuito y el conjunto de las reactancias intrínsecas de la máquina eléctrica (Z transitoria directa e indirecta, Z subtransitoria directa e indirecta, por ejemplo). Estos valores dependen de las características mecánicas constructivas y del diseño y son parámetros fundamentales para la instalación del equipo. Son necesario para realizar los cálculos de ingeniería a la hora de conectar el grupo electrógeno a una red eléctrica.

De hecho, están definidos por los Grid Codes porque si no se respetan ciertos baremos, la máquina no sería compatible con la red eléctrica y esto podría generar serios daños y cortes de suministro.

La clase de aislamiento es otro aspecto a tener en cuenta. Para grupos electrógenos solemos hablar de clase H aunque se utilicen también F y B en algunos casos.

Este parámetro indica la calidad de la impregnación de los bobinados -la capacidad del aislamiento entre un conductor y otro-. Por ejemplo, ‘Aislamiento clase H’ quiere decir que los devanados están preparados para calentarse hasta 165 ºC cuando la temperatura ambiente es de 40 ºC.

Sin embargo, puede ser necesario el aislamiento clase H y funcionamiento ser de clase F. Esto significa que, aunque el bobinado esté preparado para trabajar hasta 165 ºC cuando la temperatura ambiente es de 40 ºC, nosotros lo limitaremos a 145 ºC.

En resumen:

ALTERNADOR PARA GRUPO ELECTRÓGENO

Valores de temperatura por clase de aislamiento.

El Automatic Voltage Regulator -AVR- es el dispositivo que regula la salida de tensión y que se encarga de mantenerla controlada en todas las condiciones de carga.

Puede funcionar de dos formas: isócrona -tensión siempre constante- o droop -hay una diferencia controlada entre plena carga y vacío-, según esté configurado el sistema. Ampliaremos este aspecto cuando tratemos el paralelo.

El AVR puede ser digital o analógico y dialogar o no con otros dispositivos del sistema. Importante destacar que según el tipo de carga y el grado de precisión que necesites, podrás optar por uno que monitoriza al mismo tiempo todas las fases del circuito o solo una. La precisión de la regulación suele estar entre un 0,5 % y 1 %, dependiendo de la calidad del regulador.

¿Todavía más?

El sistema de refrigeración es normalmente de aire, pero también puede ser agua con circuitos cerrado. La refrigeración por agua se prefiere en ambientes con contaminación en el aire, riesgos químicos o de explosión.

La distorsión armónica -THD- en la línea del suministro que dependerá de la carga pero también del alternador y de sus reactancias intrínsecas vistas arriba.

Las conexiones del alternador se realizan por la caja puesta encima del mismo. Suele ser una caja sencilla con una serie de bornes y barras en su interior donde se pueden atornillar los cables.

Accesorios de un alternador para grupo electrógeno

Entre los accesorios más importantes, se debe recordar a los sensores de temperatura de los devanados los cuales cumplen la función de monitorear que no haya un excesivo calor que pueda dañar el aislamiento y provocar un cortocircuito.

Otros sensores son los de temperatura de cojinetes, especialmente importantes en aplicación de suministro continuo, distintas cajas de conexión especial y adaptadores mecánicos para el acoplamiento al motor.

El PMG, o generador de imanes permanentes, sirve para separar la alimentación de la excitación y suministro eléctrico principal. Es especialmente útil cuando se suministran equipos electrónicos que inducen elevadas distorsiones armónicas en la línea de alimentación.

Para saber más

Mucho más se podría decir sobre los alternadores para grupo electrógeno pero no se pretende aquí entrar en detalles técnicos y aspectos de ingeniería.

No obstante, si te gusta la física puedes consultar la Ley de Faraday de inducción electromagnética; si tienes deseos de aprender más te recomiendo comenzar por esteeste otro artículos de Wikipedia; y si no se te ha quedado claro qué son las escobillas puedes averiguarlo aquí.

Los Grid Codes en Europa están regulados  por la Comisión Europea y definidos por un comité de expertos. Puedes consultarlos aquí Europa.eu/Electricity Network Codes.

Por último, te recomiendo visitar los sitios web de fabricantes como Stamford-avk.comMarelli motori.comMeccalte.com. Por nombrar algunos europeos.

Photo Credit Wikipedia y fotos proprias.

Déjame el email para recibir nuevos artículos.

Portada

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

grupo electrógeno alta tensión

Cada vez más a menudo encontramos instalaciones de grupos electrógenos con salida de potencia en Alta Tensión. Esto ocurre por varias razones: técnicas, económicas y otras relacionadas con la instalación.

Veremos en este artículo los más importantes aspectos y las soluciones técnicas para grupos electrógenos en baja o en alta tensión.

¿Qué son los grupos electrógenos de alta tensión?

Ante todo, se definirá lo referido a baja y alta tensión. Respecto a sistemas eléctricos en corriente alterna, la baja tensión se refiere a valores hasta los 1.000Vac y la alta tensión a valores a partir de 1.001Vac y sin límite superior.

En algunos casos, encontramos también que el rango intermedio, entre 1.000 y 15.000Vac, se define como media tensión, pero esto depende mucho del país y de otras convenciones más que de razones técnicas.

La baja tensión es la que usamos tanto a nivel doméstico como a nivel comercial o industrial. Los valores más comunes son de 230V monofásicos y 400Vac trifásicos en 50 Hz o de 110 monofásicos y 480Vac trifásicos en 60Hz.

Para la producción y la distribución de la energía eléctrica se recurre a tensiones mayores y esto se debe a la necesidad de transportar potencias elevadas aprovechando corrientes y secciones de conductores reducidos.

Es importante recordar que la potencia es igual a √3 x Tensión x Corriente x Cosϕ, lo que significa que manteniendo la misma corriente (y sección de cable) si aumentamos la tensión también aumenta la potencia de forma proporcional.

Elevar la tensión durante el transporte permite manejar grandes cantidades de energía, la cual corre por los mismos cables aéreos que puedes observar a menudo al lado de la carretera o cruzando las praderas sujetados por torres de gran altura.

grupo electrógeno alta tensión

Fuente: Pexels.com

Por esos cables pasan cientos de miles de voltios para transportar varios megavatios desde el punto de producción hasta el punto de consumo.

¿Cuándo se necesita un grupo electrógeno en alta tensión?

No siempre es suficiente un generador en baja tensión.

A veces las instalaciones requieren conectar el grupo electrógeno directamente con las propias redes de distribución. Por ejemplo, cuando generamos como Peak Shaving y damos soporte a la red pública, es necesario que los generadores sean adecuados para la conexión directa a las subestaciones y su salida sea igual que la de las líneas que van a alimentar.

Además, otro factor importante es la potencia.

A partir de los 6300A sea, 400Vac o 690Vac, las conexiones son costosas y muy complejas disminuyendo la  posibilidad de maniobrar y proteger las líneas, pues este es el máximo tamaño disponible para interruptores y seccionadores.

Según la fórmula de antes, la máxima potencia a 400Vac será aproximadamente 3,5MW. Por lo tanto, para aprovechar la potencia de los motores más grandes o para poder sincronizar varios generadores en paralelo, y con ello  entregar más potencia, no queda más alternativa que elevar la tensión a por lo menos, 5,5kV, 11kV o 15kV; ya que estos son los valores más comunes de trabajo a 50Hz.

En resumen, entre los aspectos más importantes que influyen en la elección entre baja o alta tensión, se encuentra la necesidad de conectarse con redes y la potencia total que queramos generar con los grupos electrógenos.

Otros aspectos de generadores en alta tensión

Hasta aquí hemos visto algunas cuestiones muy generales relacionadas con la tensión de salida del generador.

Pero hay otros aspectos a tener en cuenta.

Incluso cuando ya se ha decidido que nos conviene generar en alta tensión, tenemos varias posibilidades y debemos  elegir si emplear un alternador con salida en alta tensión o acoplar el tradicional generador en baja tensión a un transformador elevador.

Ambas soluciones tienen ventajas e inconvenientes. Vamos a verlas con más detalle.

Grupo electrógenos con alternador en alta tensión

La ventaja más obvia de usar un grupo electrógeno que incorpore un alternador de alta tensión es la dimensión. Al usar el generador en alta tensión no es necesario ningún componente añadido para elevar el voltaje, simplemente remplazamos los interruptores o seccionadores de baja tensión por las celdas de protección y maniobra de alta tensión.

En otras palabras, la huella del generador queda muy similar a uno de la misma potencia, pero en baja tensión.

Esta solución presenta un mayor rendimiento que la que emplea el transformador; de hecho, este último introduce unas pérdidas en el sistema. Además, nos ahorramos costoso cableado entre estos dos componentes, pudiendo conectar directamente las borneras del generador a los interruptores en alta tensión.

Por último, una ventaja a nivel técnico es una mayor corriente de corto circuito (la cual dependerá exclusivamente del alternador), lo que permite conectar el generador a sistemas de distribución sin perjudicar la coordinación de las protecciones; y otra ventaja, es una mejor respuesta de tensión y frecuencia que resulta en una mayor estabilidad del sistema en su conjunto.

Grupos electrógenos en baja tensión acoplado a transformador elevador

Es importante señalar que también la versión con transformador tiene sus ventajas en determinadas situaciones.

Ante todo, permite tener doble salida de tensión en la misma máquina; la de baja tensión se podrá aprovechar para sistemas auxiliares, mientras que la de alta tensión, tras el transformador, servirá para entregar la potencia máxima.

El alternador de baja tensión es una maquina eléctrica más sencilla y más común que la de alta tensión, por lo tanto, no necesitará de técnicos especializados para el mantenimiento, sino que cualquier persona competente en grupos electrógenos podrá intervenir.

Igualmente, gracias al trasformador elevador podremos alcanzar niveles de tensión hasta 30kV, siendo estos limitados a 15kV en caso de alternador e incluso tensiones no comerciales o especiales fabricando transformadores a medida.

Por último, teniendo un transformador entre alternador y cargas, tendremos un aislamiento galvánico que protegerá al alternador en caso de perturbaciones o fallos en la línea y en caso de cargas con elevadas distorsiones.

Para saber más

Espero que ahora tengas las ideas más claras respecto al uso de un grupo electrógeno en alta tensión.

Hay muchos aspectos en juego: técnicos, económicos y relacionados con la instalación. Es necesario tenerlos en cuenta a la hora de escoger la mejor solución para tu caso.

Para profundizar las tensiones y frecuencias más comunes en baja tensión te recomiendo este artículo de Wikipedia.org mientras que la definición formal de Alta Tensión la puedes encontrar aquí.

Para finalizar, si no tienes del todo claro a qué me refiero con Peak Shaving, te sugiero leer el artículo de este blog sobre paralelo.

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

 

Gensets Para Dummies: curso sobre generadores eléctricos

Genset Fácil es un curso sobre generadores eléctricos

Tanto si tu profesión está relacionada con este mundo como si no, Genset Fácil te ayuda a comprender el uso y las aplicaciones del generador eléctrico.

curso sobre generadores eléctricosGenset Fácil es una idea de Massimo Brotto.
Massimo lleva más de 15 años en la industria del grupo electrógeno y de los generadores eléctricos. En este tiempo ha tenido la oportunidad de dar formaciones tanto a nivel técnico como a nivel comercial con el fin de transmitir sus conocimientos en el ámbito de la ingeniería y aplicaciones. El reto de Genset Fácil es el de simplificar conceptos de ingeniería para quien no sea un ingeniero, está publicado en forma de blog con un estilo amigable y  práctico.
La primera parte de este curso sobre generadores eléctricos, está constituida por 11 entradas y cada una abarca un aspecto concreto relacionado con el grupo electrógeno. Puedes leer todos los artículos  en el orden propuesto o saltar entre los que más te interesan. ¡A tu ritmo!

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

Genset Fácil, curso sobre generadores eléctricos

 

 

Qué es un generador eléctrico

que es un generador electrico

Genset Fácil comienza con una introducción muy sencilla para comprender las bases sobre “Qué es un grupo electrógeno”.  Leyendo este artículo comprenderás cuáles son los componentes que forman parte de un generador eléctrico, así como sus principales funciones.

Dónde se usa un generador

Este artículo te ofrece un abanico de ejemplos muy concretos de situaciones donde se usan los generadores eléctricos. El grupo electrógeno se emplea en una multitud de situaciones: industrias, eventos, hospitales, telecomunicaciones y más. ¡Te llevarás más que una sorpresa!

La potencia

La potencia de un generador eléctrico se puede medir de distintas formas según se use para emergencia o para un servicio continuo. Aprenderás algunas pautas importantes para poder elegir bien y comprender los distintos tipos de potencias que se pueden encontrar en un grupo electrógeno.

Estabilidad de tensión y frecuencia

Como sabemos si nuestro grupo electrógeno es buenoLo que hace mejor o peor un generador eléctrico son sus componentes, el diseño y la fabricación. Todo esto influye en la fiabilidad y robustez del grupo electrógeno y también en la calidad de la energía que éste genera. En este artículo comprenderás cómo se clasifican los grupos electrógenos en función de la calidad de la energía eléctrica producida y como ésta se mide.

 Cómo dimensionar un generador eléctrico

CÓMO SE CALCULA LA POTENCIA DEL GRUPO ELECTRÓGENOYa has leído mucho sobre grupos electrógenos, sabes reconocer uno y reconocer sus componentes y entiendes los criterios que usan los fabricantes para declarar sus características. Sin embargo, cuando vamos a elegir un generador eléctrico para nuestro uso, lo primero que debemos conocer es la potencia. Con algunos ejemplos prácticos y una herramienta muy sencilla, comprenderás cómo se puede establecer exactamente el tamaño de nuestro generador eléctrico.

Impacto de las condiciones ambientales en el funcionamiento

como influyen las condiciones ambientales el funcionamientoTanto si necesitas el grupo electrógeno para la fiesta en la playa como si lo necesitas para tu casa en el monte, tienes que saber cómo las condiciones ambientales afectan su rendimiento. En este artículo aprenderás que el entorno puede afectar el óptimo funcionamiento del generador eléctrico y podrás revisar cuáles son las medidas que se pueden tomar para garantizar un uso correcto.

Derating

¿QUÉ ES EL DERATING?Las condiciones extremas de temperatura, humedad y altitud causan una pérdida de potencia en cualquier grupo electrógeno. Aprende cómo calcularla y cómo tenerla en cuenta a la hora de dimensionar tu generador eléctrico.

Las pruebas en fábrica y en situ

¿A qué pruebas se somete un grupo electrógeno?

Un generador eléctrico, antes de ser entregado a su dueño, se somete a una serie de pruebas en fábrica. Este artículo te ofrece una descripción de cuáles son y para qué sirven. ¿Sabías que puedes asistir a las pruebas o pedir que se hagan pruebas específicas para tu caso concreto? Aquí descubrirás cómo hacerlo.

Transporte y manipulación

¿CÓMO SE TRANSPORTA E INSTALA UN GRUPO ELECTRÓGENO?En esta última parte del curso no tratamos aspectos técnicos aunque siempre relacionados con el grupo electrógeno. En este artículo aprenderás como preparar un generador eléctrico para estar almacenado durante mucho tiempo, además de otros aspectos básicos de la logística. Sabrás cómo un generador eléctrico se puede transportar por carretera o por barco. Descubrirás cuáles son los aspectos que se deben considerar para el transporte, cuánto puede costar y cómo organizar la manipulación del grupo electrógeno para ponerlo finalmente en su lugar de instalación.

Mantenimiento

mantenimiento grupo electrógenoUna vez que el grupo electrógeno esté funcionando es necesario prever y organizar su mantenimiento. Si no sabes cómo hacerlo, aquí tienes una guía muy práctica y sencilla con todo lo que tienes que saber para que tu grupo electrógeno sea duradero y eficiente.

Marco Normativo

Qué directivas debe de cumplir un grupo electrógenoPor último, se consideran los aspectos normativos. ¿Sabes la diferencia entre normativas, directiva y REBT? Con este artículo comprenderás las diferencias y sobre todo sabrás cuáles se aplican al grupo electrógeno. Esta guía te será útil tanto si quieres información a nivel general, como si tienes que vender o comprar un generador eléctrico de segunda mano.
Se cierra aquí la primera parte de este curso sobre generadores eléctricos y grupos electrógenos. Seguirá una segunda parte para tratar más en detalle los distintos componentes y analizar con profundidad el funcionamiento eléctrico.
Veremos las distintas tecnologías que emplean los motores para grupo electrógeno, analizaremos el funcionamiento de un alternador, estudiaremos el cuadro eléctrico y las funcionalidades que puede gestionar, desde la carga de la batería hasta la comunicación con el motor, desde el paralelo hasta la gestión de la parada de emergencia.

Antes de despedirme me permito pedirte un gran favor: que dejes un comentario o una sugerencia. Cuéntame tus curiosidades, lo que te gustaría aprender en la siguiente parte y también lo que no te ha gustado. Tus palabras serán una gran ayuda para seguir y mejorar Genset Fácil.

Espero que hayas disfrutado con Genset Fácil, curso sobre generadores eléctricos. Solo te queda compartirlo en tus redes sociales, para que también tus amigos puedan aprender sobre grupos electrógenos y generadores eléctricos. ¡Hasta pronto!

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

¿A qué pruebas se somete un grupo electrógeno?

Cada equipo eléctrico que adquirimos tiene que pasar por unas pruebas de funcionamiento antes de poder comercializarse. ¿Pero a qué pruebas se somete un grupo electrógeno?

Un grupo electrógeno no se fabrica, se ensambla. Los componentes principales como el motor, el alternador y el cuadro eléctrico se someten a pruebas específicas realizadas por los respectivos fabricantes. Fabricantes que a veces ensamblan el grupo electrógeno completo y otras veces no.

Por lo tanto, el empaquetador, o packager, del grupo electrógeno deberá, tras haber ensamblado los distintos componentes, probar el conjunto y los sistemas auxiliares que añada, los cableados de control y potencia, las líneas de combustible o el capotado de protección e insonorización.

¿A qué pruebas se somete un grupo electrógeno?

La validación e introducción en el mercado de un grupo electrógeno, es un proceso que requiere profundos estudios y estrictas pruebas para poder garantizar tanto las prestaciones como los requisitos de calidad.

Podemos distinguir dos familias de pruebas que los packager realizan en sus equipos: las pruebas que se realizan una sola vez en el equipo prototipo y, las pruebas a las que se someten todos los equipos fabricados en serie. Las pruebas del prototipo sirven para realizar comprobaciones y recaudar información sobre el generador en su conjunto y su comportamiento en distintas situaciones de trabajo; mientras que las pruebas para la producción de serie, son más sencillas y sirven para comprobar la calidad del montaje a través de un examen visual y una prueba funcional en carga que suele durar unas decenas de minutos. Lo suficiente para comprobar que todos los sistemas están integrados correctamente y no hay fugas de gasóleo, fallos de cableado, problemas mecánicos de montaje o partes mecánicas ensambladas de forma incorrecta.

Cada fabricante tiene sus propios criterios aunque las principales pruebas para nuevos productos y prototipos se pueden resumir en: prueba de ATB (Air To Boil), prueba de infiltración de agua, prueba de contrapresión del conducto del aire de refrigeración y de gases de escape, prueba de nivel de potencia acústica (ruido) y por último, el análisis de la respuesta ante una subida repentina de la carga.
Sin embargo, una vez que el grupo electrógeno llega a la fase de producción masiva, solo se realizará una prueba funcional en carga y una inspección visual del equipo en su conjunto.

¿A qué pruebas se someten los grupos electrógenos?

La prueba ATB (Air To Boil) sirve para averiguar la máxima temperatura ambiente en la que el equipo puede trabajar antes de que el motor se pare por sobretemperatura. Se realiza manteniendo el grupo electrógeno trabajando a plena carga durante un tiempo suficiente para llevar el motor a un régimen constante de intercambio térmico. Entonces se miden la temperatura ambiente y la de motor. Interpolando esos valores con un cálculo y aplicando oportunas ponderaciones, se obtiene el máximo valor de temperatura ambiente en la que nuestro grupo electrógeno puede funcionar. Es importante destacar que este valor no depende exclusivamente del motor y del sistema de refrigeración, sino también de la carrocería o contenedor donde el genset está instalado. Éstos también condicionan los flujos de aire y el intercambio térmico.

Con la prueba para averiguar la presencia de infiltraciones de agua, se somete el equipo a una lluvia simulada y se averigua si entra agua, de ser así, se verifica si esto afecta a zonas sensibles como el alternador y/o el cuadro eléctrico.

La contrapresión en el conducto de entrada y salida de aire de un grupo electrógeno insonorizado, es la medida de resistencia que el mismo conducto ofrece al pasaje del aire. Si ésta es elevada, compromete la refrigeración, perjudica la estanqueidad y cuando se suma a una elevada velocidad del aire, favorece la entrada de suciedad. Por ello, es necesario controlarla y en caso de que el valor no sea satisfactorio, se deben tomar medidas para reducirlo.

Por otro lado,  la contrapresión en conducto de escape es la resistencia que las tuberías oponen a la salida de los gases de escape del motor. Este valor debe mantenerse lo más bajo posible para dejar margen a la instalación de las chimeneas de escape y así, permitir la evacuación de los gases de combustión de forma adecuada. En algunos motores se requiere una contrapresión mínima para poder garantizar los valores de emisión de contaminante.

la DIRECTIVA 2006/42/CE nos obliga a mantener cualquier maquinaria apta al uso en exterior por debajo de ciertos niveles acústicos considerados peligrosos. Para asegurar el cumplimiento de este requisito, se realizan mediciones reales del nivel acústico del grupo según un protocolo preestablecido.

Para examinar la calidad del diseño, se comprueba el acceso a las partes sujetas a mantenimiento, la visibilidad de los mandos, la accesibilidad de la parada de emergencia, la resistencia de las bisagras, de las cerraduras, de los manguitos, de los tapones, entre otros.

Por último, se realizan pruebas mecánicas como el izado o la caída controlada, que sirven para contrastar los datos de diseño con el comportamiento real en caso de accidentes o durante el transporte o la manipulación.

Una vez superadas las pruebas de prototipo, el nuevo diseño de grupo electrógeno entra en fase de producción masiva. Se arranca y se pone en carga para comprobar el montaje y el suministro de potencia, tensión, corriente, frecuencia y se examina el estado visual de los componentes principales, de la calidad de la pintura y del acabado.

¿Y si quiero asistir a las pruebas?

Cuando compras un grupo electrógeno puedes asistir a las pruebas y retirar tu equipo solo después de que se haya demostrado el cumplimiento de los requisitos preestablecidos. Además, puedes confeccionar un protocolo de pruebas a medida que refleje la situación real de funcionamiento y cualquier otra exigencia de la instalación. Este protocolo personalizado se llama Factory Acceptance Test -FAT- y debe de ser aceptado y sellado tanto por el cliente, como por el fabricante, después de las pruebas y antes de la entrega del equipo.

Si también quieres hacer pruebas una vez que el grupo electrógeno esté instalado, pedirás un Site Acceptance Test -SAT-.

Para saber más

Las normas ISO 8528-6 e ISO 8528-8 indican unos requisitos mínimos de pruebas aunque en realidad los protocolos que emplean los fabricantes sean más estrictos y exigentes.

En Safe work method of statement.com puedes ver un ejemplo de protocolo de prueba y en YouTube hay algunas grabaciones.

Sobre la directiva máquina, te recomiendo esta web Directivamaquinas.com que ofrece información muy bien organizada mientras que el texto original de la DIRECTIVA 2006/42/CE es consultable en este enlace Eur-lex.europa.eu.

Photo Credit Pexels.com

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

¿QUÉ ES EL DERATING?
Las condiciones ambientales como la temperatura o la altitud, así como, algunas características eléctricas propias de las cargas que vamos a conectar al grupo electrógeno, pueden perjudicar la prestación del mismo. Por lo tanto, la potencia que el generador es capaz de suministrar se puede ver afectada. Esta influencia ha de tenerse en cuenta a la hora de dimensionar nuestra máquina, pero ¿cómo podemos saber de antemano los efectos del entorno donde instalaremos nuestro grupo electrógeno?
¿QUÉ ES EL DERATING?

Antes de que la electrónica se hiciese tan popular entre los motores de coche, cuando todavía circulaban los Simca 1000 y los Peugeot 205, todos recordamos con una sonrisa aquellas experiencias por el monte. Esos motores aspirados escalaban con fatiga los puertos de montaña y cuando íbamos toda la familia en el coche, siempre llegaba un momento en el que alguien se tenía que bajar.

¡El motor está caliente! ¡Que alguien baje y vuelvo a recogerlo luego!

Solía decir el conductor cuando el coche no podía más. El monte es un entorno que pone a prueba un motor y no solo por las cuestas, sino también por la falta de aire debida a la altitud. Esta falta de aire hace que el motor pierda potencia.

¿Qué es el derating?

En otro post hemos aprendido cómo la temperatura y la altitud afectan al grupo electrógeno. Además, hay otros fenómenos eléctricos característicos de algunos tipos de cargas que reducen la potencia del generador.

La buena noticia es que para cada condición negativa, tenemos la posibilidad de prever y apaciguar los efectos. Los fabricantes de motores y alternadores nos dan tablas y reglas para calcular la potencia que perdemos.

El fenómeno de pérdidas de potencia debido a factores característicos del entorno donde se instala el grupo electrógeno, se llama derateo o derating. Las instrucciones para calcular las pérdidas, se llaman tablas de derating.

Efectos en el motor

En general, la temperatura afecta el motor a partir de los 40 ºC. Siendo escaso el aire caliente que llega a la admisión, hay menos cantidad de oxígeno disponible para la combustión en la camera del cilindro. En un motor tipo inyector-bomba, la pérdida de potencia puede llegar a más de 10 % por cada 10 ºC de temperatura, mientras que en los modernos common rail gestionados electrónicamente, la pérdida se reduce de forma importante o se elimina.

Por otro lado, la temperatura afecta la eficiencia de los sistemas de refrigeración. Cuando el radiador no es capaz de sacar el calor del motor, bien habrá que bajar potencia, bien habrá que poner un radiador más grande. El radiador deberá estar adecuadamente sobredimensionado para la temperatura de trabajo. Se toman estas medidas para evitar que el controlador del grupo electrógeno pare el motor por sobretemperatura de agua. El disparo por sobretemperatura suele ocurrir gracias a un sensor de temperatura instalado en el radiador y ajustado entre los 100 y los 110 ºC dependiendo del motor.

La temperatura afecta también al combustible. Si éste llega al motor demasiado caliente -por encima de 40 ºC- la combustión no tendrá las condiciones óptimas y se deberá aplicar un derateo de hasta 3 % por cada 10 ºC.

La altitud afecta mayormente a los motores aspirados con respectos a los turboalimentados, ya que la turbina compensa, hasta cierto punto, la escasez de aire. La falta de oxígeno afecta a la calidad de la combustión y la prestación del motor como hace la temperatura. Siendo aplicable derateo a partir de los 1000 msnm para motores pesados y 500 msnl para motores ligeros, se puede tomar en cuenta un valor de 4 % por cada 500 m para un motor aspirado y de un 2 % por cada 500 m para un turbo.

Efectos en el alternador

El alternador también se ve afectado por la temperatura. Los bobinados están diseñados para trabajar a 25 ºC o 40 ºC ambiente según la clase de aislamiento. Si esta temperatura se alcanza, habrá que reducir la potencia para evitar que el aislamiento se dañe y ocurran accidentes. Para prevenir inconvenientes, la temperatura de los devanados se puede controlar con sensores específicos: cuando éstos detectan temperaturas peligrosas, envían una alarma para desconectar el grupo electrógeno. La pérdida de potencia por temperatura en un alternador es del orden del 3 % por cada 5 ºC por encima de los 40 ºC ambiente.

También en este caso hay que tener en cuenta los efectos de la altitud. La escasez de aire afecta el intercambio térmico y en el alternador se produce un sobrecalentamiento. Es correcto considerar una reducción de potencia del 3 % por cada 500 m de altitud por encima de los 1000 msnm.

No solo las condiciones ambientales afectan al rendimiento del alternador. También un factor de potencia -FdP- excesivamente bajo nos obliga a limitar la potencia. Esta pérdida aumenta si el FdP es capacitivo en lugar de inductivo. Por esta razón hay que tener extrema precaución cuando se alimenta un banco de condensadores con un grupo electrógeno pues éstos generan una pérdida importante.

Por ejemplo, se pierde el 5 % de potencia con FdP 0,7 y hasta un 15 % con FdP 0,3. Estos valores son válidos si se trata de desfase inductivo, si no fuese así, habría que considerar pérdidas mayores.

La información y los datos de arriba sirven como nociones generales acerca del derateo de grupos electrógenos. Los valores que se han dado son indicativos. Cada marca y modelo especifico de motor y alternador tiene características únicas en función del diseño y de las tecnologías empleadas. Sería imposible resumir en un post toda la información de todos los fabricantes. Para solicitar una información más especifica puedes usar los comentarios abajo. Estaré encantado de ayudarte.

Para saber más

Aquí te dejo un artículo muy práctico sobre las pérdidas por temperatura que afectan turismos Autofacil.es, no está demás tener algún conocimiento al respecto. También puedes estudiar la importancia del enfriamiento de alternadores, con esta noticia del blog de CGT, una autoridad al respecto Stamford-avk.com.

Photo Credit Nico Quatrevingtsix

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

Como sabemos si nuestro grupo electrógeno es bueno

Las diferencias más evidentes entre grupos electrógenos, son las dimensiones y la potencia.

Sin embargo, cuando tenemos dos generadores de igual forma constructiva, de igual potencia y de igual frecuencia y tensión,  ¿cómo sabemos cuál es mejor?

¿Cómo se comporta un grupo electrógeno?

Imagina que estás conduciendo tu coche por un camino a 50 kilómetros por hora. No puedes subir ni bajar la velocidad. Tienes que mantenerte constante todo el tiempo. Mientras estés por un camino recto y en buenas condiciones no será tan difícil, pero ¿qué pasará cuando alcances una curva o una cuesta? ¿Y si alguien se subiera de repente al coche, conseguirías mantener la velocidad constante?

Seguramente sí, aunque existan unas pequeñas variaciones entre el momento en el que te encuentres el obstáculo, y en el que consigas corregir y estabilizar la velocidad de nuevo. Los obstáculos, son asimilables a fenómenos eléctricos que obligan a los sistemas de regulación del grupo electrógeno a actuar tanto sobre la frecuencia como sobre la tensión. Estos fenómenos serán, por ejemplo, impacto de carga, transitorios de arranque o paradas.

Dejando a un lado (de momento), las consideraciones sobre construcción mecánica, nos centramos en lo que se refiere a las características eléctricas. A igualdad de potencia, tensión y frecuencia, la capacidad de reacción ante variaciones de carga no siempre es igual. Así que dos generadores con las mismas características eléctricas podrían responder de formas muy distintas a los mismos estímulos.

Estas diferencias en el comportamiento, afectan de forma palpable  la estabilidad de frecuencia y tensión y hasta al funcionamiento del mismo motor.  Podemos observar subidas o bajadas repentinas de frecuencia y tensión hasta causar daños a las cargas conectadas a nuestro genset.

La calidad de la respuesta del grupo electrógeno

La magnitud de las variaciones de frecuencia y tensión y la rapidez de reacción del motor y alternador para volver a estabilizar el sistema, son los parámetros que nos indican la calidad de la respuesta del grupo electrógeno.

La norma ISO 8528, parte 5, nos ayuda. Define cuatro distintas clases de regulación, cada una de ellas recoge 22 parámetros de funcionamiento e indica un umbral de variación admisible. Estos parámetros comprenden desde la variación de frecuencia y tensión en régimen estabilizado, hasta los porcentajes de intercambio de potencia activa y reactiva en caso de funcionamiento en paralelo.

Las clases de regulación en más detalle:

  • G1, la más tolerante: aplicada a grupos electrógenos equipados con motores de regulación mecánica y reguladores de tensión analógicos. Sirve para cargas genéricas no electrónicas y sin componentes sensibles a las oscilaciones. Ej. bombas, hornos, molinos.
  • G2, la más común:  aplicada a grupos electrógenos equipados con motores de regulación electrónica (no common rail) y reguladores de tensión analógicos o digitales. Sirve para casos genéricos donde haya variedad de cargas incluyendo sistemas electrónicos poco sensibles. Ej. residencias, procesos industriales, hospitales, aeropuertos.
  • G3, la más exigente: aplicada a grupos electrógenos equipados con motores de regulación common rail y reguladores de tensión  digitales. Sirve para casos específicos donde haya elevada presencia de cargas electrónicas muy sensibles. Ej. centros de procesamiento de datos, procesos químicos, equipos militares de comunicación.
  • G4, el traje a medida: aplicada cuando hay un acuerdo específico entre el fabricantes de grupos electrógenos y el cliente. Puede precisar sobredimensionado de componentes o reguladores especiales. Sirve para casos muy puntuales donde los equipos alimentados no sean compatibles con la clase G3. Ej. equipos de vigilancia, robot industriales, superordenadores.

Parámetros que afectan la calidad de la respuesta del grupo electrógeno

Algunos parámetros tienen efectos más evidentes que otros en el funcionamiento del genset. A continuación explicaré los principales y más significativos. La lista completa está disponible seguidamente  en inglés.

  • Caída de frecuencia -droop-: se trata de la máxima caída porcentual admitida entre vacío y carga.

  • Estabilidad de frecuencia y tensión en régimen estabilizado: se trata de la máxima variación porcentual admitida a régimen nominal y sin variaciones de carga.

  • Variación de frecuencia y tensión y tiempos de recuperación en régimen transitorio: se trata de las variaciones ante una variación de carga. El tiempo de recuperación es el tiempo que transcurre entre la variación y la vuelta de tensión y frecuencia dentro de los parámetros de régimen estable.

En esta tabla puedes ver los valores límites dados para cada parámetro explicado en lo gráficos:

Parámetro

Unidad

Clase de regulación

G1

G2

G3

G4

Caída de frecuencia -droop-

%

≤8

≤5

≤3

según acuerdos específicos

Estabilidad de frecuencia en régimen estabilizado

%

≤2,5

≤1,5

≤0,5

según acuerdos específicos

Estabilidad de tensión en régimen estabilizado

%

≤5

≤2,5

≤1

según acuerdos específicos

Variación de frecuencia en régimen transitorio

%

≤15

≤10

≤7

según acuerdos específicos

Variación de tensión en régimen transitorio

%

≤25

≤20

≤15

según acuerdos específicos

Tiempos de recuperación de frecuencia en régimen transitorio

s

≤10

≤5

≤3

según acuerdos específicos

Tiempos de recuperación de tensión en regimen transitorio

s

≤10

≤6

≤4

según acuerdos específicos

La tabla es un extracto de ISO 8528-5:2005, la información está resumida y simplificada para facilitar su comprensión a título informativo. Si necesitas estos datos para fines de diseño e ingeniería te recomiendo consultar la versión original y completa de ISO 8528-5:2005 o sus más recientes ediciones.

Para saber más

En otro artículo ya se trataba la norma ISO 8528. Es una norma muy importante para fabricantes y usuarios de grupos electrógenos porque recoge valiosa información sobre como diseñar, fabricar, probar y operar cualquier generador. Puedes visitar la web del International Organization for Standardization ISO a la dirección Iso.org.

Para saber más sobre el common rail y por qué es más eficiente, te sugiero ver este artículo en Bolido.com, muy didáctico y detallado, a parte de la infalible Wikipedia.org

Photo Credit: Pexels.com

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

¿Te acuerdas de aquella vez en la que acabaste sin aliento después del partido, mientras tu amigo decía que no era para tanto? En ese caso, el esfuerzo de cada uno no fue el mismo, aunque tal vez el resultado sí lo fuera. La potencia que cada uno empleó fue diferente, tendría distintos altibajos y el esfuerzo máximo tendría intensidades distintas. Los dos sabéis que ha sido un gran partido, pero ¿cómo podríamos medir el esfuerzo -o la potencia- de cada uno?

potencia de un grupo electrógeno

Un grupo electrógeno es una máquina capaz de generar una energía, dependiendo de cómo usemos esa energía, las variaciones de intensidad y los tiempos, determinaremos la  vida útil del generador. Exactamente como cuando tenemos que dosificar nuestras fuerzas de formas muy distintas antes de una larga carrera o un sprint de cien metros. En el caso del deporte, se establecen criterios objetivos de medición: las reglas, las líneas, los cronometrajes por ejemplo. En el caso de las máquinas, tenemos la misma necesidad de unificar criterios para poder medir de la misma forma todos los equipos que queremos comparar.

Las clasificaciones de potencia del grupo electrógeno

Clasifican las declaraciones de potencia y unifican los criterios de medición, son los especialistas del organismo internacional conocido como International Organization for Standardization (ISO), que en la norma ISO 8528 recoge los criterios que los fabricantes de grupos electrógenos de todos el mundo deben emplear para medir la potencia de los genset que fabrican.

Esta norma describe 4 distintas clases de potencia, según el uso -o aplicación- que queramos darle al generador:

  • Continuous Power (COP) es la potencia de la que dispondremos continuamente para un tiempo ilimitado de horas al año.
  • Prime Power (PRP) es la potencia máxima disponible para un número ilimitado de horas al año, siempre que la carga sea variable.
  • Limited Time Power (LTP) es la potencia disponible de forma continua para un número limitado de horas, quinientas al año.
  • Emergency Stand-By (ESP) es la potencia disponible de forma continua para un número limitado de horas, doscientas al año, siempre que la carga sea variable.

Imagina si tuvieras que utilizar tu coche para competir en una carrera de velocidad -¡solo una vez!-, seguramente pisarías a fondo para sacar la máxima potencia y después de la carrera tu coche acabaría chatarra. Sin embargo, si lo usas todos los días para ir al trabajo, de compras y de viaje con la familia, harás muchísimos más kilómetros pero de una forma más moderada y controlada, mezclando carreteras principales y callejeo. El símil nos ayuda para entender la diferencia entre las potencias descritas antes: el ESP sería el modo carrera, lo damos todo durante poco tiempo;  mientras el COP sería el uso día a día: sacamos menos potencia pero de forma continua, sin parar. Entre el uno y el otro extremo tenemos la LTP, otra carrera pero más larga donde habrá que dosificar mejor la potencia; y la PRP, una rutina más variada que la anterior con viajes en autovía donde iremos al límite de vez en cuando, siempre que lo compensemos con otro tramo más moderado.

¿Qué es la potencia COP?

La Potencia Continua -COP-, se define como la máxima potencia que el generador es capaz de entregar suministrando una carga constante durante un número ilimitado de horas al año, bajo las condiciones estipuladas y ejecutando las operaciones de mantenimiento descritas por el fabricante.

Esta potencia se emplea para definir grupos electrógenos que trabajan 24/7 a potencia constante, inyectando a red -o compañía- una potencia siempre igual. En ocasiones, las productoras de energía eléctricas, refuerzan ciertas líneas de suministro con grupos electrógenos allí donde ha crecido muy rápidamente la demanda y la red de transporte se ha quedado insuficiente. Siempre se trata de genset conectados a red porque sería imposible tener una carga constante todo el tiempo, solo la red es capaz de absorber una potencia constante y redistribuirla donde haga falta. También puede ocurrir que el grupo electrógeno para un hospital, una industria o un hotel, necesite integrar el suministro de compañía.  En este caso, el generador entrega siempre una potencia constante, potencia base, y la red se utiliza para suministrar los picos, es decir, la diferencia entre la demanda real y la suministrada por el grupo electrógeno.

¿Qué es la potencia PRP?

La Potencia Prime -PRP-, se define como la máxima potencia que el generador es capaz de entregar suministrando una carga variable durante un número ilimitado de horas por año, bajo las condiciones estipuladas y ejecutando las operaciones de mantenimiento descritas por el fabricante. El promedio de carga admisible en un período de veinticuatro horas, no debe superar el setenta por cien de la potencia PRP, salvo que el fabricante del motor especifique otra cosa. Para el cálculo de este valor promedio, los intervalos a potencias menores del 30 % se considerarán como si fuesen 30 % igualmente, y los intervalos de tiempo con motor apagado no se cuentan en el cálculo.

La potencia PRP es la que se considera en la mayoría de los casos, siendo la carga variable, la mas común. Puede ser un generador en isla o en paralelo con la red pero siempre suministrando cargas variables en el tiempo con picos puntuales hasta la potencia máxima PRP declarada.

¿Qué es la potencia LTP?

La potencia -LTP- se define como la máxima potencia que el generador es capaz de entregar durante un número limitado de 500 horas por año, bajo las condiciones estipuladas y ejecutando las operaciones de mantenimiento descritas por el fabricante.

¿Qué es la potencia ESP?

La potencia -ESP-, se define como la máxima potencia que el generador es capaz de entregar suministrando una carga variable durante un corte de compañía o una sesión de pruebas para un número limitado de 200 horas por año, bajo las condiciones estipuladas y ejecutando las operaciones de mantenimiento descritas por el fabricante. El promedio de carga admisible en un periodo de 24 horas, no debe superar el 70 % de la potencia ESP, salvo que el fabricante del motor especifique otra cosa. Para el cálculo de este valor promedio, los intervalos de potencias menores del 30 % se considerarán como si fuesen 30 % igualmente, y los intervalos de tiempo con motor apagado no se cuentan en el cálculo.

Tanto la potencia LTP como la ESP son adecuadas para la mayoría de instalaciones de emergencia en países desarrollados. Cada año en Europa, según Eurelectric.org, sufrimos cortes de red entre quince minutos y siete horas* dependiendo del país, en todo caso son tiempos muy por debajo de las 500 o 200 horas admitidas por las clasificaciones LTP y ESP. La razón principal por la que todavía se emplean grupos clasificados con potencia PRP en aplicaciones de emergencia destinadas a trabajar no más de un puñado de horas al año, es el desconocimiento de las reales diferencias entre las clasificaciones disponibles. Además, un exceso de prudencia y la costumbre, han cimentado la práctica de sobredimensionar los grupos electrógenos en la mayoría de las instalaciones. Solo en estos últimos años de recortes de  presupuestos, se ha prestado más atención a este aspecto.

Sin embargo, hay una situación muy distinta en los países en desarrollo. Aquí los cortes de compañía son tan frecuentes que las horas de funcionamiento superan sobradamente las quinientas al año. En África, el suministro eléctrico se corta todos los días durante varias horas, en Burundi han habido cortes hasta acumular 144 días al año**, mientras que el promedio de fallos de la región sub-sahariana, es de unas 1350 horas al año**. Esto genera una situación donde el generador acumula muchas horas de trabajo. En estos casos es mejor optar por un genset PRP.

Para saber más.

Hablamos de países desarrollados y en desarrollo, pero, ¿ cuál es la diferencia? Básicamente el producto interno bruto (PIB), los ingresos per cápita, el nivel de industrialización, de instrucción y de seguridad. Hay varios organismos como Las Naciones Unidas, el International Monetary Fund (IMF) o la Organización para la Cooperación y el Desarrollo Económico (OCDE)  que establecen sus propios criterios detallados y sus informes. Además para saber más sobre el nivel de desarrollo de un país concreto, puedes consultar el World Factbook de la CIA.

Para saber más acerca del International Organization for Standardization ISO, puedes visitar Iso.org,mientras te sugiero leer este artículo sobre las aplicaciones del grupo electrógeno.

Notas:

  1. *Fuente Eurelectric.org
  2. **Fuente Worldbank.orgWikipedia.org

Photo Credit: Pexels.com

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

 

Están por todos lados: en el restaurante de los domingos, en el hospital donde tu hermana acaba de dar a luz, en el aeropuerto donde te subes al avión hacia el caribe y en la estación de Renfe de camino a la Uni. Podrías seguir más y más líneas engordando la lista de los sitios donde podríamos encontrar un grupo electrógeno. Solo en 2013 se produjeron mas de 380 mil unidades!*

Es cierto, los usos para estos equipos son muy numerosos y muy variable. Pero, ¿cómo podríamos describir y catalogar todos estos usos, estos lugares, estas funciones?

El suministro eléctrico se da por sentado, es difícil imaginar situaciones en las que la energía eléctrica no esté disponible. Estamos acostumbrados a que simplemente solicitando una acometida a cualquiera de las más de 300 comercializadoras de Energía Eléctrica registradas en España, ya estamos automáticamente conectados. Sin embargo, pueden ocurrir fallos en la red de distribución o eventos naturales que interrumpen el suministro de forma inesperada. Además, si vamos a países en desarrollo veremos que hay zonas completamente aisladas donde cualquier servicio necesita de generadores para poder funcionar.

¿Para qué y donde se necesita un grupo electrógeno?

En todos estos sitios veremos diferentes tipos de operativas y funciones, para reunirlos y describirlos de una forma organizada, introducimos el concepto de aplicación.

La aplicación indica el destino final del generador, describe el sector de la empresa o del ejercicio del usuario final, aporta información acerca del modo de trabajo y con buena aproximación nos dice el número de horas de funcionamiento diario.

Las aplicaciones principales son:

  • Emergencia.
  • Contraincendio.
  • Industria.
  • Construcción.
  • Eventos.
  • Alquiler.
  • Marino.
  • Recuperación desastres.
  • Telecomunicaciones.
  • Data Centers.
  • Defensa.

Cada una de estas aplicaciones se distingue de las otras en aspectos importantes que afectan el modo de funcionamiento del equipo, el equipamiento del mismo y las cantidad de horas de funcionamiento, es decir, la vida útil.

Las aplicaciones del grupo electrógeno en detalle

Emergencia. Es la aplicación más común en los países desarrollados. Se trata de generadores que deben suministrar energía solo en el caso de que falle el suministro principal. Esta aplicación recoge un amplio abanico de casos: desde hospitales y aeropuertos, hasta tiendas, hoteles y restaurantes. Desde casas particulares, hasta instalaciones deportivas y de ocio. El trato en común es evitar que los usuarios del establecimiento se vean afectados por el apagón.

El objetivo del grupo electrógeno es el de estar disponible en caso de que el suministro normal falle por cualquier razón. En este caso, el genset arranca y suministra el establecimiento de la energía que necesita.

Contraincendio, provee alimentación a los sistemas de bombeo de agua en caso de incendio. Imagina que haya un incendio y a la vez falte el suministro eléctrico, en este caso, necesitaremos de grupo electrógeno para la misma seguridad del establecimiento y de las personas que en él estén.

Industria. El sector industrial puede necesitar generadores en tres casos: emergencia -se asimila al caso anterior- para no dejar procesos de fabricación a medio en caso de corte del suministro; mantenimiento, para cortes de red programados debidos a mantenimientos o ampliaciones; falta de potencia, cuando la red eléctrica no esté distribuida hasta la fábrica o no pueda entregar suficiente potencia.

Construcción. Las obras son sitios muy duros para un grupo electrógeno, extensas horas de trabajo y mucha variación de cargas como grúas y compresores. Además, el ambiente de trabajo es polvoriento, el cuidado suele ser escaso y la manipulación se descuida. Las máquinas para construcción deben ser fuertes y resistentes, aptas para ser arrastradas por la obra y fáciles de conectar. Las instalaciones son temporales -para la duración de la obra- así que esta operación debe ser ágil y fácil de ejecutar.

Minería. Parecido a la construcción por el ambiente, se diferencia de aquél por las condiciones de contaminación del aire que pueden llegar a ser peor y por la instalación que en este caso es de largo plazo. Se pueden emplear depósitos externos conectados al principal del grupo electrógeno para garantizar una autonomía extensa y usar filtros de aire específicos -heavy duty- que aumentan la protección del motor.

Eventos. Ferias, conciertos, grabaciones de cine o de televisión, fiestas de boda o convenciones de empresas. En todos estos casos se recurre a generadores para dar suministro a los sistemas eléctricos necesarios para el desarrollo del acontecimiento. Las particularidades de esta aplicación son la extrema necesidad de reducir el ruido, la posibilidad de alimentar cargas no lineales, la necesidad de larga autonomía y fiabilidad extrema. El ruido del grupo no se puede mezclar con la música del concierto o la voz de conferenciante. Amplificadores de voz, instumentos musicales, luces estroboscopicas, son carga muy delicadas desde el punto de vista eléctrico, que perjudican el funcionamiento del grupo electrógeno si no se dimensionan correctamente.

La autonomía debe ser suficiente para garantizar un funcionamiento sin interrupciones durante todo el tiempo del evento. Es absolutamente imprescindible que no hayan fallos durante el evento. Imagina un apagón en medio de un festival o durante una directa televisiva de una final de fútbol: seria imperdonable, para evitarlo, se emplean varios grupos iguales trabajando juntos, si fallase uno, el resto del sistema podría asumir la carga y nadie se daría cuenta del inconveniente. Bueno, los técnicos sí.

Alquiler. Aunque el utilizador final de un grupo electrógeno alquilado sea en efecto una industria, un evento o una obra, en este caso habrá que tener en cuenta sobre todo las necesidades propias del alquilador. Estos generadores por lo tanto se diseñan para ser versátiles, adaptarse a cualquier uso final, ser fáciles de transportar, tener autonomía elevada para no depender de instalaciones complejas de gasóleo, incorporar modos de funcionamiento válidos tanto para emergencia como par trabajos continuos y en paralelo con otros genset.

Marino. También en los barcos hay electricidad, ésta se genera con grupos electrógenos instalados en el mismo buque. Las peculiaridades en este caso son el sistema de refrigeración del motor que emplea agua de mar, una serie de certificaciones específicas que estos equipos requieren para poder navegar y que el sistema de distribución (y puesta a masa/tierra) es distinto para garantizar la protección de las personas y evitar fenómenos de electrolisis que deteriorarían la quilla de forma acelerada. En efecto, en alta mar no hay tierra.

Recuperación de desastres. Tras un desastre natural – huracán,  terremoto, una aluvión  se ejecuta un plan de contingencia que abarca todos los ámbitos de asistencia primaria necesarios para asistir a los afectados. Entre ellos, recordamos hospitales de campaña, estructura de asistencia médica de urgencia, estructura de hospitalización de los evacuados, puesta en seguridad de las áreas afectadas, achique de aguas y por supuesto, necesidades eléctricas par desarrollar todas estas funciones. Un grupo electrógeno empleado en un plan de contingencia, debe ser ante todo rápido de poner en servicio, fiable y apto para cualquier tipo de carga se necesite alimentar.

Telecomunicación. La creciente difusión de aparatos móviles conectados a internet, ha generado la necesidad de mejorar la red de difusión de la señal. Te habrá ocurrido, que te encuentras en un sitio aislado, sin casas ni almas, pero tienes cobertura móvil.  Esto pasa sobre todo en países en desarrollo donde el tiempo de implantación de la infraestructura eléctrica, no va al mismo ritmo que la imparable industria de las telecomunicaciones. Así es que las antenas móviles -llamadas Base transceiver station (BTS)- se proveen de grupos electrógenos para la alimentación de los equipos de transmisión. Los equipos TLC deben  estar preparados para funcionar en ambientes muy distintos por temperatura, humedad, cantidad de lluvia. Además, deben ser capaces de suministrar cargas muy variables y no lineales, estar protegidos ante posibles robos de combustible y estar aptos y optimizados para reducir los interventores de mantenimiento.

Centros de Procesamiento de Datos (CPD). El Big Data no es una definición abstracta, es una realidad que necesita de una imponente infraestructura de almacenamiento de datos. Esta infraestructura constaba en 2016 de más de medio millón** de datacenter por el mundo, mas de 50 solo en España***. Los data center se diferencian por el nivel de seguridad que depende satisfacer: los datos procesados por un banco o por una clínica, no tienen la misma criticidad que aquellos almacenados por empresas de publicidad o proveedores de plataformas de blogueo. A cada uso corresponde una exigencia distinta y se encarga un instituto americano, el Up-Time Institute, a distinguir y definir los requerimientos de seguridad y las tecnologías para conseguirlos. Además, este define un rateo de potencia distinto denominado Data Center Continuous (DCC) específico para los CPDs. En cualquier caso, se necesita de generadores para garantizar el funcionamiento del Data Center en caso de fallo del suministro eléctrico principal.

Defensa. Fuerzas armadas y fuerzas de policía desarrollan continuamente misiones en el extranjero desplegando repartos enteros en zonas angustias y totalmente privas de infraestructuras. De la misma manera que despliegan estructuras para alojar las tropas, cocinas y hospitales de campaña, construyen centrales de suministro de energía empleando grupos electrógenos. Indudablemente, estos generadores deben ser fiables, aptos para  trabajar 24/7 y preparados para el funcionamiento en paralelo.

En otros casos, se emplean genset como componentes de equipos de defensa, algunos tanques o vehículos blindados incorporan generadores para suministrar los aparatos eléctricos necesarios a los dispositivos de defensa comunicación. Otros vehículos empleados para operaciones de inteligencia emplean generadores para radares y sistemas de vigilancia.

Para saber más

Ahora sabes lo que es una aplicación y puedes distinguir las principales.

Sin embargo, hay algunos temas que puedes profundizar. Para entender mejor quién y cómo comercializa la energía eléctrica en España, puedes consultar la Comisión Nacional de los Mercados y la Competencia Cnmc.es que nos proporciona información acerca de los actores de este sector.

Si el big data  y las TLC te ha despertado curiosidad, la podrás satisfacer con un excelente e-book de Leandro Zanoni, Futuro Inteligente, mientras para entender la ingeniería de una BTS te aconsejo Wikipedia.org.

Si te quieres dedicar al diseño de CPDs empieza por el Uptimeinstitute.com.

Para ver ejemplos de carros de combate y vehículos blindados, mira las web de este fabricante de Emiratos Nimr.ae o de este de Suiza General Dynamics.com: disponen de información técnica de sus productos.

Notas:

  1. *Fuente Frost & Sullivan
  2. **Fuente Emerson
  3. ***Fuente Datacentermap.com

Photo Credit: Pexels.com

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.

 

El Grupo Electrógeno que también se puede llamar Generador Eléctrico, Generador Diésel, Generador Gas o Genset, es una máquina muy común en nuestras ciudades. El Grupo Electrógeno suministra electricidad a hospitales, aeropuertos, obras e industrias. Sirve para macro-conciertos y festivales y a menudo se emplea en grabaciones de cine, eventos publicitarios y hasta en bodas.
El Genset siempre es el mismo y siempre hace lo mismo: suministrar energía eléctrica. Pero, ¿cómo lo logra?

Generador Eléctrico

A lo largo de la historia la energía eléctrica se ha hecho indispensable, al punto que hoy en día está distribuida y disponible en cualquier rincón de cualquier país avanzado. Sin embargo, hay situaciones donde el suministro no existe o se interrumpe por razones ajenas a la producción o al transporte. Imagina zonas extremadamente remotas, aldeas aisladas, zonas de montaña o de campo: si quisiéramos disponer de electricidad en estos entornos, debemos recurrir a un Generador Eléctrico.

Imagina una fuerte tormenta eléctrica,  un terremoto, un huracán o una inundación: a menudo estos desastres naturales causan daños y desperfectos a la red eléctrica y en consecuencia extensas áreas se quedan desconectados en un momento de extrema necesidad. Entre 1981 y 2010, un promedio anual de 25 entre tormentas y huracanes, han afectado las costas americanas del Pacífico. Ante estos desastres, la única forma de restaurar rápidamente el suministro eléctrico es emplear un genset. El grupo electrógeno también forma parte del plan de contingencia para la recuperación tras un desastre -Disaster Recovery en inglés- junto con la medicina de emergencia por ejemplo.
Caso diferente es el de los países subdesarrollados: allí las infraestructuras eléctricas son insuficientes y ni siquiera las ciudades más importantes pueden prescindir de generadores.

¿Qué es un Generador Eléctrico?

El Grupo electrógeno es una máquina que genera electricidad a partir de combustible fósil. Emplea un motor a combustión interna y un generador eléctrico  o alternador.

El Grupo electrógeno se instala sobre una bancada de metal y un sistema de soportes que absorben las vibraciones generadas por la rotación del motor. Puede llevar una carrocería de protección que también reduce el ruido producido. En ocasiones, se emplean contenedores de carga marítima previamente transformados para garantizar refrigeración y protección.
Se completa con un cuadro eléctrico de control y uno de potencia. El primero, gestiona maniobra (arranque, parada, test, emergencia) y protecciones (de motor y alternador), el segundo, sirve como dispositivo de corte y protección de la salida de energía. Suele ser un interruptor automático o circuit breaker en inglés.
Las características principales de un generador son la potencia, la tensión y la frecuencia de trabajo.
 

 ¿Cómo funciona un Generador Eléctrico?

El motor principal desarrolla y entrega potencia mecánica y estas se convierte en eléctrica por el alternador. Suele ser un motor de combustión interna alimentado por gasóleo, gasolina, gas (GPL o Gan Natural) u otros combustibles menos comunes como Jet-fuel, aceite pesado o bio-combustibles. La procedencia de estos motores depende de la gama de potencia. Para potencias hasta 100kVA,  se emplean motores normalmente derivados de la aplicación náutica deportiva como lanchas o maquinarias agrícolas. En mediana potencia, hasta aproximadamente 600kVA, se emplean motores del automoción, camiones predominantemente. En el caso de potencias mayores, se emplean motores para maquinarias movimiento tierra y de propulsión naval como aquellos que empujan lujosos buques de cruceros o más humildes porta-contenedores.

El régimen de rotación del motor, influencia directamente la frecuencia del suministro eléctrico generado, pues éste depende en igual medida del motor y del alternador.
Como en el caso de la automoción, disponemos de motores de inyección directa o common rail, y cuyo sistema de aspiración puede ser natural, turbo-alimentado o turbo-alimentado con pos-refrigeración.
La forma en que los fabricantes declaran la potencia está normalizado (ISO 8528) y se expresa según la aplicación: tenemos Potencia Principal (PRIME); Potencia Continua (CONTINUOUS); Potencia de Emergencia (STAND-BY).
El funcionamiento del motor está influenciado por las condiciones climáticas. Todos los valores de potencia se refieren a unas condiciones normalizadas y repetibles.
Para favorecer el arranque y el correcto funcionamiento en condiciones climatológicas adversas, se recurre a dispositivos, como el pre caldeo de agua, que sirven para minimizar los efectos nefastos del frio.
La máquina eléctrica, o alternador, es el encargado de convertir la energía mecánica generada por el motor en energía eléctrica.
Se fabrica con la misma tecnología que los motores eléctricos (un ventilador o la bomba del filtro de una piscina), de hecho, es un motor que funciona al revés: en lugar de transformar energía eléctrica en mecánica, transforma energía mecánica en eléctrica.
Del alternador dependen la tensión y el sistema de distribución (trifásico, monofásico, bifásico), según la necesidad deberemos dimensionar el generador para suministrar la tensión adecuada. Hay cierto margen de ajuste para cubrir un abanico de tensiones con la misma máquina, sin embargo hay que averiguar previamente la compatibilidad del sistema. Por otro lado, el mismo equipo puede funcionar a 50Hz o a 60Hz, solo depende de la velocidad de rotación que le transmita el motor.
La salida eléctrica está controlada por un regulador de tensión (Automatic Voltage Regulator en inglés) que puede ser digital o analógico. Solo en las unidades mas pequeñas se usa un sistema denominado compound.
La vida y las prestaciones del alternador pueden verse comprometidas tanto por factores ambientales, una elevada humedad ambiental o presencia de polvo y arena en el aire, como por factores eléctricos, es decir, presencia de cargas conocidas como no lineales. Se trata de cargas con elevadas distorsiones armónicas y ruido.  Sin embargo se dispone de medidas de atenuación de estos efectos tales como dispositivos anti condensación, filtros de aire, sistemas de exitación y control inmunes a las distorsiones armónicas.

Para saber más.

Para comprender mejor la necesidad de emplear grupos electrógenos, se podrán profundizar los conceptos de producción y transporte de energía eléctrica. La compañía Red Eléctrica de España se encarga de gestionar el suministro en España y en su página web ree.es nos proporciona valiosas informaciones acerca del desempeño de estas funciones.
Para entender por qué se recurre a generadores tras un desastre natural, podemos consultar Wikipedia.org que nos explica de forma muy accesible las clases de eventos que pueden ocurrir,  sus efectos y su frecuencia.

Déjame el email para recibir nuevos artículos.

Descarga GRATIS Genset Fácil Lite, el curso sobre grupos electrógenos que simplifica conceptos de ingeniería con un lenguaje sencillo.